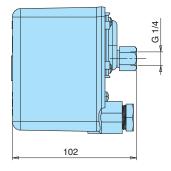
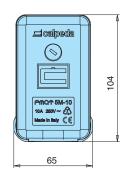
PMAT

PRESSURE SWITCHES FOR WATER SYSTEM APPLICATIONS



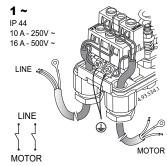

Adjustment key included

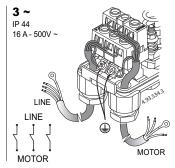
Dimensions

Construction

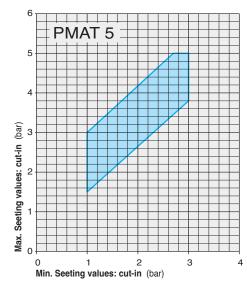
- Pressure switches for use with water in autoclave systems
- The switch ensures automatically the starting and stopping of the electric pump according to the set pressure values
- Electric contacts: normally closed and made of brass alloy with Ag-Ni surfacing
- Terminals with M4 screws and 8x8 mm pressure dice
- NBR rubber membrane with textile insert (food grade for PMAT 5M-10, PMAT 5M/T-16, PMAT 5.5M/T-16)
- 1/4"F hydraulic connection made of galvanized steel
- Standard protection degree IP 44
- Liquid temperature up to 55 °C
- Max ambient temperature: 55°C
- Tear resistant cable clamps

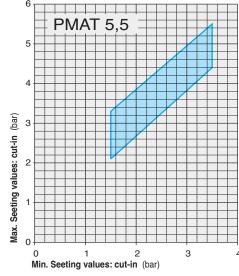
Technical data


2-pins	1	Pressure	Differ	Factory	
2 pino	max A	range bar	min bar	max bar	setting bar
PMAT 5M-10	10	1 - 5	0,6	2,3	1,4 - 2,8


Maximum rated voltage 250V

2-nine		Pressure	Differ	ential	Factory
2-61119	max A	range bar	min bar	max bar	setting bar
PMAT 5M/T-16	16	1 - 5	0,6	2,3	1,4 - 2,8
PMAT 5,5M/T-16	16	1,5 - 5,5	0,8	2,2	1,8 - 3
PMAT 12M/T-16	16	3 - 12	1,5	5	5 - 7


Maximum rated voltage 500V


Connection diagram

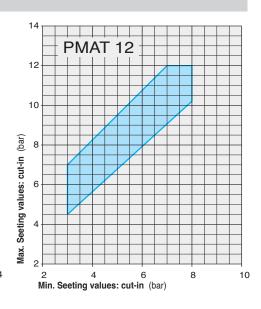


Diagram seeting

ARIAMAT

AUTOMATIC AIR FEEDER

Materials

Component

Upper elbow

Feeder body

Conical fittings

Air valve

Ball valve

Pipe

Material

Brass

Brass

Rubber

Polycarbonate

Polyethylene

Polyethylene

ARIAMAT

type

AR 300E	
AR 1000E	
AR 2000E	

Complete with connections and 1 m polyethylene pipe

Construction

The automatic air feeder ARIAMAT controls the air cushion in the pressure vessel by replacing the air dissolved in the water at every pump start. This device limits the number of pump starts and stops, allows a better use of the water reserve and improves the overall performance of the automatic pressure system.

Operation

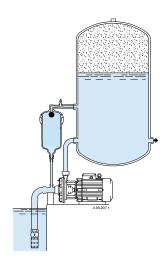
ARIAMAT operation is explained in pictures 1-2-3-4.

At the end of every cycle, ARIAMAT AR 300E, AR 1000E and AR 2000E let in the vessel 300, 1000 and 2000 cm³ of air respectively.

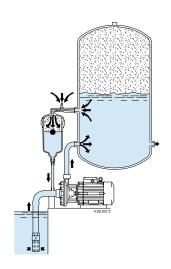
For a good operation of ARIAMAT it is necessary to have enough suction pressure in the pipe whilst the pumps are running.

If the pumps work under positive suction head and water falls to the suction inlet, there will not be enough suction pressure in the suction pipe to allow a correct operation of ARIAMAT; in this case, it is necessary to create an artificial loss in the suction pipe, by closing gradually the gate valve when the pump is running until the water level in the ARIAMAT starts dropping.

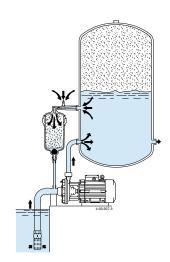
When a sufficient suction pressure to grant a safe ARIAMAT operation cannot be achieved, it is recommended to feed the vessel with a compressed air system and level probes.

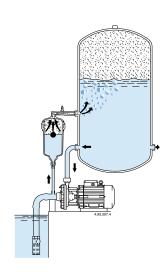

Description of the supply

The ARIAMAT is normally fitted on our automatic water systems. The supply of ARIAMAT, as a spare part to be installed by the customer, includes:


n° 1 ARIAMAT assembled with upper elbow and air valve;

m 1 Polyethylene tube with ring nut and fitting for connection to the pump suction side.


Pressure in m		Pressure vessel capacity in litres										
	100	200	300	400	500	750	1000	1500	2000	3000	4000	5000
14/28		AR 300E				AR 1000E AR			AR 2000E			
20/30		AR 300E			AR 1000E				AR 2000E			
30/40		AR 300E					AR 1000E				AR	2000E
35/55		AR 300E		AR 1000E AR			AR 2000	E				
55/70	AR 3	300E		AR 1000E AR 2000E			E					
75/95	AR 300E		AR 1	AR 1000E			The t	use of an air	compressor	is recomme	nded.	


1) When the pump is stopped, ARIAMAT is full of water.

2) When starting, the pumps creates a suction pressure which also takes the water from ARIAMAT, allowing some more water to come from the vessel. The water through the ARIAMAT venturi sucks air from the upper valve.

3) The water level in the ARIA-MAT drops until the ball valve moves to the bottom of the ARIA-MAT closing the hole of the pipe connected to the pump. ARIAMAT is now full of water.

4) When stopping, there is a back-flow of water from the vessel through the pump, to the ARIAMAT. Air is pushed inside the vessel.

ACCESSORIES

VALVES

check valve

VNR 1	
VNR 1 1/4	
VNR 1 1/2	
VNR 2	

foot valve

VDF 1	
VDF 1 1/4	
VDF 1 1/2	
VDF 2	

PRESSURE GAUGES

axial connection type

MA 0-6 MA 0-6 ABS

radial connection type

MR 0-10	
MR 0-12	
MR 0-16	

CONNECTOR

type	connection
RA5 H 92	G 1
RA5 H 105	G 1

LEVEL PROBES

type

SL 2 electrodes
SLA Assembled level probes
Cable 2x0,75 mm²
(cable length on request)

example:

SLA 30

Assembled level probes _ 30 m cable length _____

SPHERICAL VESSEL

type	connect.	capacity
SS 24	G 1	24

BUTYL rubber diaphragm.

CYLINDRICAL VESSEL

vessel with base and feet

type	connect.	capacity
SC 20 BP	G 1	20 I

BUTYL rubber diaphragm.

INOX CYLINDRICAL VESSEL

vertical cylindrical vessel

type	connect.	capacity
SCX 20	G 1	20 I

BUTYL rubber diaphragm.

INOX CYLINDRICAL VESSEL

vessel with base and feet

type	connect.	capacity
SCX 20 BP	G 1	20 I

BUTYL rubber diaphragm.

ACCESSORIES

CE 97/23 PED APPROVED PRESSURE VESSELS (Air tanks)

Hot galvanized vessels	TYPE	Dimensions		weigth
. D .		D x H mm	DN	kg
- D	100- 5	400 x 1020	G 1	32
	200- 5	450 x 1440	G 1	48
	300-8	550 x 1500	G 1 1/2	65
	500-8	650 x 1820	G 2	105
Θ	800-8	800 x 1900	G 2	145
	1000-8	800 x 2150	G 2 1/2	160
	1000- 12 ▲	800 x 2300	G 2 1/2	203
	1500- 5	950 x 2500	G 2	190
Н	1500-8 ▲	950 x 2500	G 2	255
	2000-8 🔺	1100 x 2570	G 2 1/2	330
0 0 0	2000- 12 ▲	1000 x 2780	G 2 1/2	387
DN DN	3000-8 ▲	1250 x 2930	G 3	470
$\left \frac{DN}{DN} \right = - \left \frac{DN}{DN} \right $	3000- 12 ▲	1200 x 2930	G 3	596
₿ '~~	4000-8	1450 x 3090	G 3	620
	4000- 12 ▲	1450 x 3090	G 3	880
	5000-8 ▲	1450 x 3590	G 4	715
Ш Ц Ш	5000- 12 ▲	1450 x 3590	G 4	1020

The vessels are suitable for water up to 50 °C

They are all approved at manufacturer's premises and are supplied complete with safety valve, testedvpressure gauge and fittings.

CE 97/23 PED APPROVED MEMBRANE VESSELS (Membrane vessels)

	TYPE	Pressure	Dimensions		weight
D	ITPE	bar	D x H mm	DN	kg
	SM 60 V	10	382 x 845	G 1	-
	SM 80 V	10	450 x 850	G 1	-
Н	SM 100 V	10	450 x 950	G 1	-
	SM 200 V	10	550 x 1255	G 1 1/2	-
	SM 300 V	10	630 x 1405	G 1 1/2	-
	SM 500 V	10	780 x 1550	G 1 1/2	-
	SM 750 V	10	780 x 1940	G 1 1/2	-
4.93.122.7	SM 1000 V	10	980 x 1970	G 2	-

EPDM diaphragm

Temperature -10 ÷ +100 °C
With safety valve and pressure gauge 0÷10 bar

FLOAT SWITCH

type

INTGALL

(cable 3 m, 5 m, 10 m)

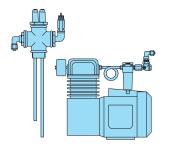
type

INTGALL M

(cable 5 m, 10 m, 20 m)

type

INTGALL A


(cable 5 m, 10 m)

FLEXIBLE HOSE

type	d x length	
FP 1-630	G 1 x 630	
FP 1-680	G 1 x 680	

SYSTEM FOR AIR INTAKE

Kit of level probes with compressor